SLOS075H - NOVEMBER 1979 - REVISED MAY 2004

6 2IN-

5 2IN+

- Equivalent Input Noise Voltage 5 nV/√Hz Typ at 1 kHz
- Unity-Gain Bandwidth . . . 10 MHz Typ
- Common-Mode Rejection Ratio . . . 100 dB Typ
- High dc Voltage Gain . . . 100 V/mV Typ
- Peak-to-Peak Output Voltage Swing 32 V Typ With V<sub>CC±</sub> = ±18 V and R<sub>L</sub> = 600 Ω
- High Slew Rate ... 9 V/μs Typ
- Wide Supply-Voltage Range . . . ±3 V to ±20 V

#### description/ordering information

NE5532, NE5532A . . . D, P, OR PS PACKAGE SA5532, SA5532A . . . D OR P PACKAGE (TOP VIEW) 10UT 1 8 V<sub>CC+</sub> 1IN- 2 7 20UT

1IN+ **1**3

V<sub>CC</sub>-

4

| The NE5532, NE5532A, SA5532, and SA5532A_are high-performance operational amplifiers combining                      |
|---------------------------------------------------------------------------------------------------------------------|
| excellent dc and ac characteristics. They feature very low noise, high output-drive capability, high unity-gain and |
| maximum-output-swing bandwidths, low distortion, high slew rate, input-protection diodes, and output                |
| short-circuit protection. These operational amplifiers are compensated internally for unity-gain operation. These   |
| devices have specified maximum limits for equivalent input noise voltage.                                           |

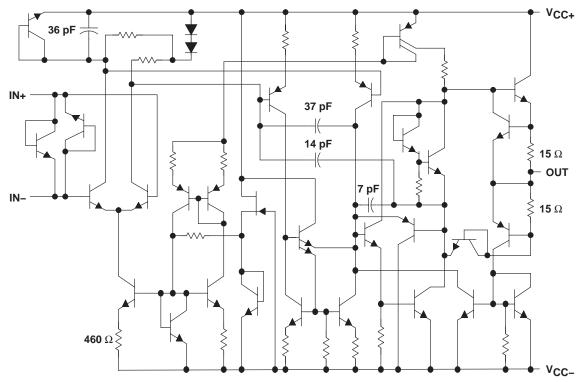
| TA            | PACKA    | GEŤ          | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |  |  |
|---------------|----------|--------------|--------------------------|---------------------|--|--|
|               |          | Table 26 50  | NE5532P                  | NE5532P             |  |  |
|               | PDIP – P | Tube of 50   | NE5532AP                 | NE5532AP            |  |  |
|               |          | Tube of 75   | NE5532D                  | NEEDO               |  |  |
|               |          | Reel of 2500 | NE5532DR                 | N5532               |  |  |
| 0°C to 70°C   | SOIC – D | Tube of 75   | NE5532AD                 | NEEDOA              |  |  |
|               |          | Reel of 2500 | NE5532ADR                | N5532A              |  |  |
|               | SOP – PS |              | NE5532PSR                | N5532               |  |  |
|               |          | Reel of 2000 | NE5532APSR               | N5532A              |  |  |
|               |          | T 1 ( 50     | SA5532P                  | SA5532P             |  |  |
|               | PDIP – P | Tube of 50   | SA5532AP                 | SA5532AP            |  |  |
| –40°C to 85°C |          | Tube of 75   | SA5532D                  | 045500              |  |  |
|               | SOIC - D | Reel of 2500 | SA5532DR                 | SA5532              |  |  |
|               | 50IC - D | Tube of 75   |                          |                     |  |  |
|               |          | Reel of 2500 | SA5532ADR                | SA5532A             |  |  |

#### **ORDERING INFORMATION**

<sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2004, Texas Instruments Incorporated

SLOS075H – NOVEMBER 1979 – REVISED MAY 2004

#### schematic (each amplifier)



Component values shown are nominal.

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage (see Note 1): V <sub>CC+</sub>                 |                  |
|---------------------------------------------------------------|------------------|
|                                                               | –22 V            |
| Input voltage, either input (see Notes 1 and 2)               | V <sub>CC±</sub> |
| Input current (see Note 3)                                    | ±10 mA           |
| Duration of output short circuit (see Note 4)                 | Unlimited        |
| Package thermal impedance, $\theta_{JA}$ (see Notes 5 and 6): | D package        |
|                                                               | P package        |
|                                                               | PS package       |
| Operating virtual junction temperature, T <sub>J</sub>        |                  |
| Storage temperature range, T <sub>stg</sub>                   |                  |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V<sub>CC+</sub> and V<sub>CC-</sub>.
  - 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
  - 3. Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used.
  - 4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
  - 5. Maximum power dissipation is a function of  $T_J(max)$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any allowable ambient temperature is  $P_D = (T_J(max) T_A)/\theta_{JA}$ . Operating at the absolute maximum  $T_J$  of 150°C can affect reliability.
  - 6. The package thermal impedance is calculated in accordance with JESD 51-7.



SLOS075H - NOVEMBER 1979 - REVISED MAY 2004

#### recommended operating conditions

|                   |                                      |                 | MIN | MAX | UNIT |
|-------------------|--------------------------------------|-----------------|-----|-----|------|
| V <sub>CC+</sub>  | Supply voltage                       |                 | 5   | 15  | V    |
| V <sub>CC</sub> - | Supply voltage                       |                 | -5  | -15 | V    |
| Τ.                | Operating free distances the same    | NE5532, NE5532A | 0   | 70  | °C   |
| Τ <sub>Α</sub>    | Operating free-air temperature range | SA5532, SA5532A | -40 | 85  | -0   |

# electrical characteristics, $V_{CC\pm}$ = +15 V, $T_A$ = 25°C (unless otherwise noted)

|                                                                    | PARAMETER                                                         | TEST CONDITIONS <sup>†</sup>             |                                          |                        | NE5532, NE5532A<br>SA5532, SA5532A |     |      | UNIT |
|--------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------|------------------------------------|-----|------|------|
|                                                                    |                                                                   |                                          | MIN                                      | TYP                    | MAX                                |     |      |      |
|                                                                    |                                                                   |                                          | T <sub>A</sub> = 25°C                    |                        |                                    | 0.5 | 4    | .,   |
| VIO                                                                | Input offset voltage                                              | $V_{O} = 0$                              |                                          |                        | 5                                  | mV  |      |      |
|                                                                    |                                                                   | T <sub>A</sub> = 25°C                    | <u>.</u>                                 |                        |                                    | 10  | 150  |      |
| ΙΟ                                                                 | Input offset current                                              | T <sub>A</sub> = Full range <sup>‡</sup> |                                          |                        |                                    |     | 200  | nA   |
|                                                                    |                                                                   | T <sub>A</sub> = 25°C                    |                                          |                        |                                    | 200 | 800  |      |
| IIB                                                                | Input bias current                                                | T <sub>A</sub> = Full range <sup>‡</sup> |                                          |                        |                                    |     | 1000 | nA   |
| VICR                                                               | Common-mode input-voltage range                                   |                                          |                                          |                        | ±12                                | ±13 |      | V    |
|                                                                    | Maximum peak-to-peak                                              |                                          | $V_{CC\pm} = \pm 15 V$                   |                        | 24                                 | 26  |      | .,   |
| VOPP output-voltage swing                                          | $R_L \ge 600 \Omega$                                              | V <sub>CC+</sub> = ±18 V                 |                                          | 30                     | 32                                 |     | V    |      |
| A <sub>VD</sub> Large-signal<br>differential-voltage amplification | R <sub>I</sub> ≥ 600 Ω,                                           | T <sub>A</sub> = 25°C                    |                                          | 15                     | 50                                 |     |      |      |
|                                                                    | 0 0                                                               | $V_{O} = \pm 10 V$                       | T <sub>A</sub> = Full range‡             |                        | 10                                 |     |      | ]    |
|                                                                    |                                                                   | R <sub>L</sub> ≥ 2 kΩ,                   | T <sub>A</sub> = 25°C                    |                        | 25                                 | 100 |      | V/mV |
|                                                                    |                                                                   | $V_{O}^{-} = \pm 10 V$                   | T <sub>A</sub> = Full range <sup>‡</sup> |                        | 15                                 |     |      |      |
| A <sub>vd</sub>                                                    | Small-signal differential-voltage amplification                   | f = 10 kHz                               | f = 10 kHz                               |                        |                                    | 2.2 |      | V/mV |
| _                                                                  |                                                                   |                                          | V <sub>O</sub> = ±10 V                   |                        |                                    | 140 |      |      |
| BOM                                                                | Maximum-output-swing bandwidth                                    | R <sub>L</sub> = 600 Ω                   | $V_{CC\pm} = \pm 18 \text{ V},$          | V <sub>O</sub> = ±14 V |                                    | 100 |      | kHz  |
| B <sub>1</sub>                                                     | Unity-gain bandwidth                                              | RL = 600 Ω,                              | C <sub>L</sub> = 100 pF                  |                        |                                    | 10  |      | MHz  |
| ri                                                                 | Input resistance                                                  |                                          |                                          |                        | 30                                 | 300 |      | kΩ   |
| z <sub>0</sub>                                                     | Output impedance                                                  | $A_{VD} = 30 \text{ dB},$                | RL = 600 Ω,                              | f = 10 kHz             |                                    | 0.3 |      | Ω    |
| CMRR                                                               | Common-mode rejection ratio                                       | $V_{IC} = V_{ICR} \min$                  |                                          |                        | 70                                 | 100 |      | dB   |
| <sup>k</sup> SVR                                                   | Supply-voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$ | $V_{CC\pm} = \pm 9 V \text{ to } \pm$    | 15 V,                                    | $V_{O} = 0$            | 80                                 | 100 |      | dB   |
| los                                                                | Output short-circuit current                                      |                                          |                                          |                        | 10                                 | 38  | 60   | mA   |
| ICC                                                                | Total supply curent                                               | V <sub>O</sub> = 0,                      | No load                                  |                        |                                    | 8   | 16   | mA   |
|                                                                    | Crosstalk attenuation (VO1/VO2)                                   | V <sub>01</sub> = 10 V peak,             | f = 1 kHz                                |                        |                                    | 110 |      | dB   |

<sup>†</sup> All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. <sup>‡</sup> Full temperature ranges are: –40°C to 85°C for the SA5532 and SA5532A, and 0°C to 70°C for the NE5532 and NE5532A.



SLOS075H - NOVEMBER 1979 - REVISED MAY 2004

## operating characteristics, V\_{CC\pm} = $\pm 15$ V, T\_A = 25°C

| DADAMETED                         |                                | TEST CONDITIONS | NE5532, SA5532 |     |     | NE5532A, SA5532A |     |     |            |
|-----------------------------------|--------------------------------|-----------------|----------------|-----|-----|------------------|-----|-----|------------|
|                                   | PARAMETER                      | TEST CONDITIONS | MIN            | TYP | MAX | MIN              | TYP | MAX | UNIT       |
| SR                                | Slew rate at unity gain        |                 |                | 9   |     |                  | 9   |     | V/µs       |
|                                   | Overshoot factor               |                 |                | 10  |     |                  | 10  |     | %          |
| V                                 |                                | f = 30 Hz       |                | 8   |     |                  | 8   | 10  |            |
| v <sub>n</sub>                    | Equivalent input noise voltage | f = 1 kHz       |                | 5   |     |                  | 5   | 6   | nV/√Hz     |
|                                   |                                | f = 30 Hz       |                | 2.7 |     |                  | 2.7 |     | - A (/   - |
| In Equivalent input noise current |                                | f = 1 kHz       |                | 0.7 |     |                  | 0.7 |     | pA/√Hz     |



18-Feb-2005

### **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup>              |
|------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------------|------------------|-------------------------------------------|
| NE5532AD         | ACTIVE                | SOIC            | D                  | 8    | 75             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-250C-1 YEAR                       |
| NE5532ADR        | ACTIVE                | SOIC            | D                  | 8    | 2500           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-250C-1 YEAR                       |
| NE5532AIP        | OBSOLETE              | PDIP            | Р                  | 8    |                | None                    | Call TI          | Call TI                                   |
| NE5532AP         | ACTIVE                | PDIP            | Ρ                  | 8    | 50             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-NC-NC-NC                            |
| NE5532APSR       | ACTIVE                | SO              | PS                 | 8    | 2000           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| NE5532D          | ACTIVE                | SOIC            | D                  | 8    | 75             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-250C-1 YEAR                       |
| NE5532DR         | ACTIVE                | SOIC            | D                  | 8    | 2500           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-250C-1 YEAR                       |
| NE5532IP         | OBSOLETE              | PDIP            | Р                  | 8    |                | None                    | Call TI          | Call TI                                   |
| NE5532P          | ACTIVE                | PDIP            | Ρ                  | 8    | 50             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-NC-NC-NC                            |
| NE5532PSR        | ACTIVE                | SO              | PS                 | 8    | 2000           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SA5532AD         | ACTIVE                | SOIC            | D                  | 8    | 75             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SA5532ADR        | ACTIVE                | SOIC            | D                  | 8    | 2500           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SA5532AP         | ACTIVE                | PDIP            | Ρ                  | 8    | 50             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-NC-NC-NC                            |
| SA5532D          | ACTIVE                | SOIC            | D                  | 8    | 75             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SA5532DR         | ACTIVE                | SOIC            | D                  | 8    | 2500           | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-2-260C-1 YEAR<br>Level-1-235C-UNLIM |
| SA5532P          | ACTIVE                | PDIP            | Р                  | 8    | 50             | Pb-Free<br>(RoHS)       | CU NIPDAU        | Level-NC-NC-NC                            |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

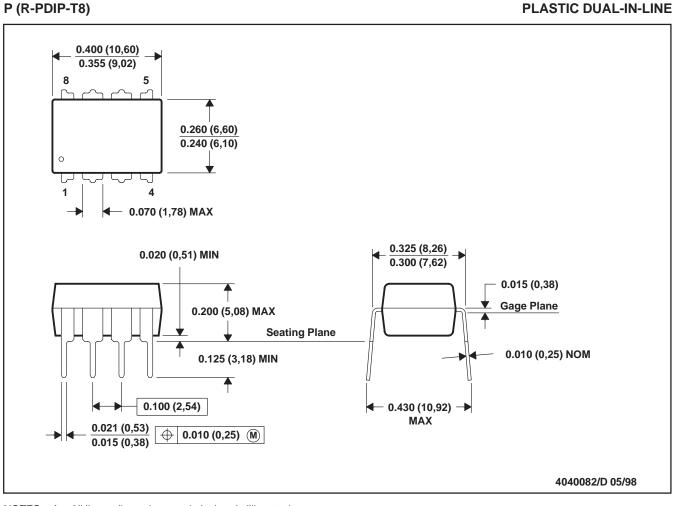
**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is




# PACKAGE OPTION ADDENDUM

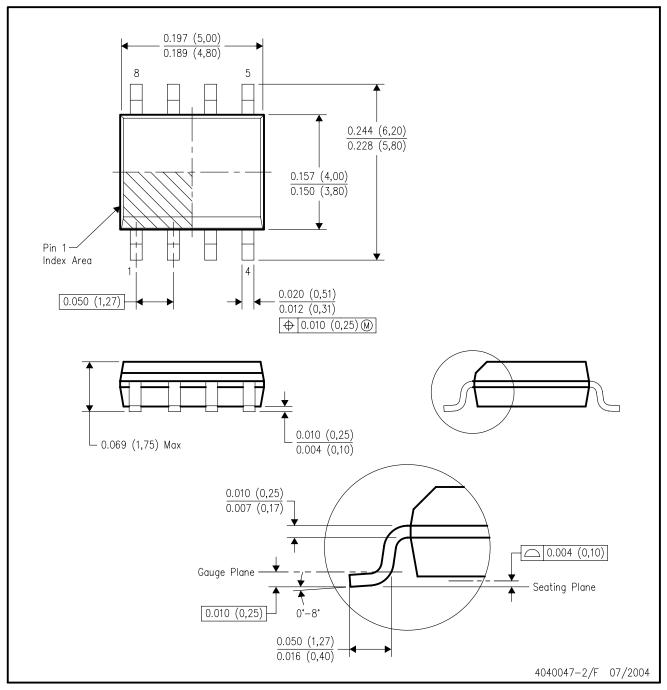
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

### **MECHANICAL DATA**

MPDI001A - JANUARY 1995 - REVISED JUNE 1999




- NOTES: A. All linear dimensions are in inches (millimeters).
  - B. This drawing is subject to change without notice.
  - C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg\_info.htm



D (R-PDSO-G8)

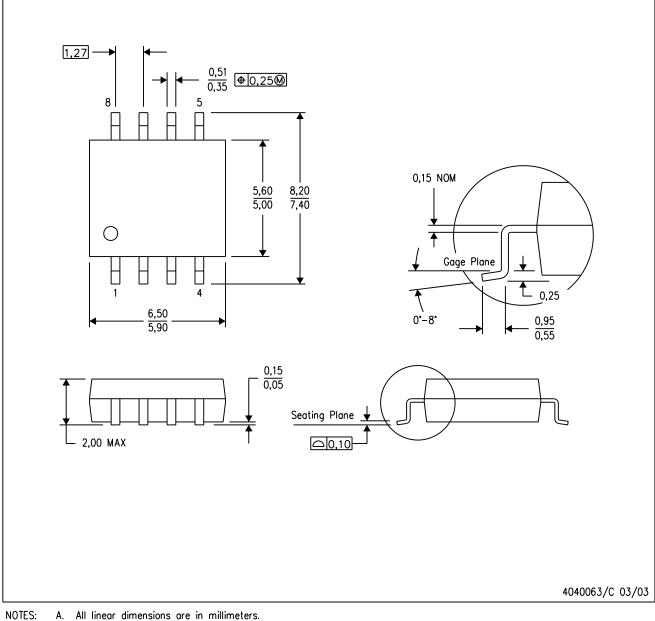
PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-012 variation AA.



#### **MECHANICAL DATA**

### PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.