
Features

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 120 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
- Non-volatile Program and Data Memories
 - 1K Byte of In-System Programmable Program Memory Flash Endurance: 10,000 Write/Erase Cycles
 - 64 Bytes In-System Programmable EEPROM Endurance: 100,000 Write/Erase Cycles
 - 64 Bytes Internal SRAM
 - Programming Lock for Self-Programming Flash Program and EEPROM Data Security
- Peripheral Features
 - One 8-bit Timer/Counter with Prescaler and Two PWM Channels
 - 4-channel, 10-bit ADC with Internal Voltage Reference
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
- Special Microcontroller Features
 - debugWIRE On-chip Debug System
 - In-System Programmable via SPI Port
 - External and Internal Interrupt Sources
 - Low Power Idle, ADC Noise Reduction, and Power-down Modes
 - Enhanced Power-on Reset Circuit
 - Programmable Brown-out Detection Circuit
 - Internal Calibrated Oscillator
- I/O and Packages
 - 8-pin PDIP/SOIC: Six Programmable I/O Lines
- · Operating Voltage:
 - 1.8 5.5V for ATtiny13V
 - 2.7 5.5V for ATtiny13
- Speed Grade
 - ATtiny13V: 0 6 MHz @ 1.8 5.5V, 0 12 MHz @ 2.7 5.5V
 - ATtiny13: 0 12 MHz @ 2.7 5.5V, 0 24 MHz @ 4.5 5.5V
- Industrial Temperature Range
- Low Power Consumption
 - Active Mode:
 - 1 MHz, 1.8V: 240µA
 - Power-down Mode:
 - < 0.1µA at 1.8V

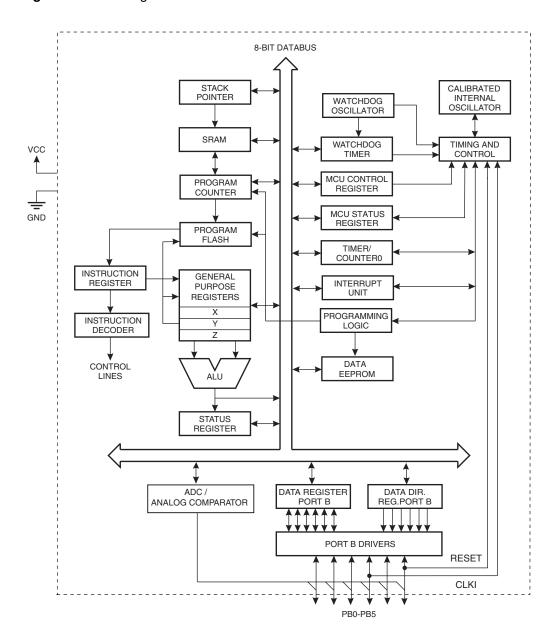
Pin Configurations

Figure 1. Pinout ATtiny13

8-bit **AVR**® Microcontroller with 1K Bytes In-System Programmable Flash

ATtiny13

Preliminary Summary



Overview

The ATtiny13 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny13 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny13 provides the following features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 64 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, Internal and External Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core.

The ATtiny13 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

Pin Descriptions

Port B (PB5..PB0)

VCC Digital supply voltage.

GND Ground.

Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny13 as listed on page 49.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 12 on page 30. Shorter pulses are not guaranteed to generate a reset.

RESET

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F	SREG	- 1	T	Н	S	V	N	Z	С	page 6
0x3E	Reserved	-	-	-	-	-	_	-	-	
0x3D	SPL		SP[7:0]				page 8			
0x3C	Reserved					_				
0x3B	GIMSK	-	INT0	PCIE	_	-	-	-	-	page 53
0x3A	GIFR	-	INTF0	PCIF	-	-	_	-	-	page 53
0x39	TIMSK0	-	-	-	-	OCIE0B	OCIE0A	TOIE0	-	page 70
0x38	TIFR0	-	-	-	-	OCF0B	OCF0A	TOV0	_	page 71
0x37	SPMCSR	-	-	-	СТРВ	RFLB	PGWRT	PGERS	SELFPRGEN	page 97
0x36	OCR0A				/Counter – Outp					page 70
0x35	MCUCR	_	PUD	SE	SM1	SM0	-	ISC01	ISC00	page 49
0x34	MCUSR	FOC0A	FOC0B	-	_	WDRF WGM02	BORF	EXTRF	PORF	page 33
0x33 0x32	TCCR0B TCNT0	FUCUA	FOCUB	-	Time au/Ca	unter (8-bit)	CS02	CS01	CS00	page 66
0x32 0x31	OSCCAL	 				oration Register				page 70 page 22
0x30	Reserved				Oscillator Calif	Diation negister				page 22
0x2F	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	_	l _	WGM01	WGM00	page 69
0x2E	DWDR	COMOAT	COMOAO	COMODI		R[7:0]	_	Walvior	Walvioo	page 94
0x2D	Reserved				5445	-				page 04
0x2C	Reserved									
0x2B	Reserved					_				
0x2A	Reserved									
0x29	OCR0B			Timer	/Counter – Outp	ut Compare Rec	jister B			page 70
0x28	GTCCR	TSM	_	-		_	_	-	PSR10	page 73
0x27	Reserved		•	•	•	_		•		
0x26	CLKPR	CLKPCE	_	_	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	page 24
0x25	Reserved					_				
0x24	Reserved		-							
0x23	Reserved					-				
0x22	Reserved					-				
0x21	WDTCR	WDTIF	WDTIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	page 37
0x20	Reserved					=				
0x1F	Reserved		-							
0x1E	EEARL	EEPROM Address Register			page 14					
0x1D	EEDR					ata Register	1			page 14
0x1C	EECR	-	-	EEPM1	EEPM0	EERIE	EEMWE	EEWE	EERE	page 15
0x1B	Reserved					_				
0x1A 0x19	Reserved					<u>-</u> -				
0x19	Reserved PORTB	_	_	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	nogo E1
0x17	DDRB	_	_	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 51 page 51
0x17	PINB	_	_	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 51
0x15	PCMSK	_	_	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	page 54
0x14	DIDR0	_	_	ADC0D	ADC2D	ADC3D	ADC1D	EIN1D	AIN0D	page 76, page 91
0x13	Reserved		l	1 555		-			1	F-3, page 0 -
0x12	Reserved					_				
0x11	Reserved					=				
0x10	Reserved					-				
0x0F	Reserved									
0x0E	Reserved					_				
0x0D	Reserved					=				
0x0C	Reserved					-				<u> </u>
0x0B	Reserved					-				
0x0A	Reserved					=				
0x09	Reserved					<u> </u>				
0x08	ACSR	ACD	ACBG	ACO	ACI	ACIE	-	ACIS1	ACIS0	page 74
0x07	ADMUX	-	REFS0	ADLAR	-	-	-	MUX1	MUX0	page 88
0x06	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 89
0x05	ADCH	 	ADC Data Register High Byte				page 90			
0x04	ADCL		A C 14 E			gister Low Byte	ADTOO	ADTO:	ADTOS	page 90
0x03	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	page 91
0x02	Reserved	-								
0x01 0x00	Reserved Reserved									
UAUU	1 10001 100									

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

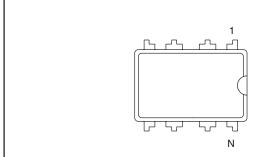
Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTIONS	3		_	
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	Rd ← Rd • K	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd − 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1
BRANCH INSTRUCT			T == == · ·	Ι	_
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI	D.I.D.	Interrupt Return	PC ← STACK	None	4
CPSE CP	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CPC	Rd,Rr Rd,Rr	Compare Compare with Carry	Rd – Rr Rd – Rr – C	Z, N,V,C,H Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b)=0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N ⊕ V= 0) then PC ← PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
BIT AND BIT-TEST I					
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1

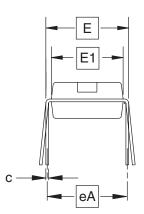
Mnemonics	Operands	Description	Operation	Flags	#Clocks
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	T ← Rr(b)	T	1
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1
SEC	riu, b	Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	C	1
SEN		,		N	1
		Set Negative Flag	N ← 1		1
CLN		Clear Negative Flag	N ← 0	N	-
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	1←1	1	1
CLI		Global Interrupt Disable	1 ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	T	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I	NSTRUCTIONS	•		•	•
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
			` '		2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	+
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	Rd ← (Y)	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
		Store Indirect Store Indirect and Post-Inc.	$(Z) \leftarrow \square$ $(Z) \leftarrow Rr, Z \leftarrow Z + 1$		
ST	Z+, Rr	1		None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	Z ← Z - 1, (Z) ← Rr	None	2
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM	-	Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(z) ← R1:R0	None	1
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS		·		•	
NOP	1	No Operation		None	1
SLEEP	1	Sleep	(see specific descr. for Sleep function)	None	1
WDR	1	Watchdog Reset	(see specific descr. for WDR/Timer)		1
BREAK	1	Break	For On-chip Debug Only	None None	N/A
		I Dreak	i For On-chip Debug Only	INODE	N/A

Ordering Information

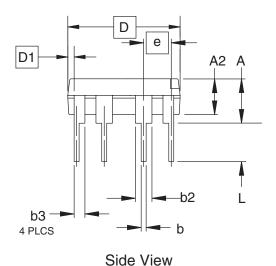
Power Supply	Speed (MHz)	Ordering Code	Package ⁽¹⁾	Operation Range
		ATtiny13V-12PI	8P3	
		ATtiny13V-12PJ ⁽²⁾	8P3	
12 ⁽³⁾	40.55	ATtiny13V-12SI	8S2	Industrial
12(0)	1.8 - 5.5	ATtiny13V-12SJ ⁽²⁾	8S2	(-40°C to 85°C)
		ATtiny13V-12SSI	S8S1	
		ATtiny13V-12SSJ ⁽²⁾	S8S1	
		ATtiny13-24PI	8P3	
		ATtiny13-24PJ ⁽²⁾	8P3	
0.4(3)	0.7. 5.5	ATtiny13-24SI	8S2	Industrial
24 ⁽³⁾	2.7 - 5.5	ATtiny13-24SJ ⁽²⁾	8S2	(-40°C to 85°C)
		ATtiny13-24SSI	S8S1	
		ATtiny13-24SSJ ⁽²⁾	S8S1	


Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

- 2. Pb-free packaging alternative.
 3. For Speed vs. V_{CC} , see "Maximum Speed vs. VCC" on page 116.


Package Type				
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
8S2	8-lead, 0.209" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)			
S8S1	8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)			

Packaging Information


8P3

Top View

End View

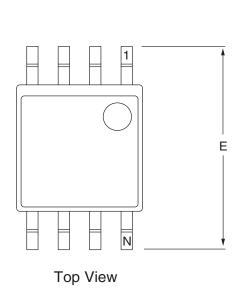
COMMON DIMENSIONS (Unit of Measure = inches)

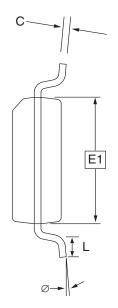
SYMBOL	MIN	NOM	MAX	NOTE
Α			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
С	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
E	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
е				
eA	0.300 BSC			4
L	0.115	0.130	0.150	2

- 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
- 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
- 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
- 4. E and eA measured with the leads constrained to be perpendicular to datum.
- 5. Pointed or rounded lead tips are preferred to ease insertion.
- 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).

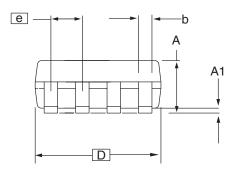
01/09/02

В


2325 Orchard Parkway San Jose, CA 95131


TITLE 8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP)

DRAWING NO. REV. 8P3



End View

Side View

COMMON DIMENSIONS

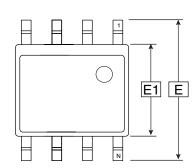
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	1.70		2.16	
A1	0.05		0.25	
b	0.35		0.48	5
С	0.15		0.35	5
D	5.13		5.35	
E1	5.18		5.40	2, 3
E	7.70		8.26	
L	0.51		0.85	
Ø	0°		8°	
е		1.27 BSC		4

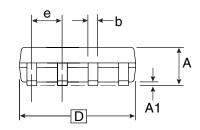
Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.

- Mismatch of the upper and lower dies and resin burrs are not included.
 It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded.
 Determines the true geometric position.
 Values b and C apply to pb/Sn solder plated terminal. The standard thickness of the solder layer shall be 0.010 +0.010/-0.005 mm.

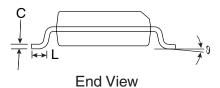
10/7/03


2325 Orchard Parkway San Jose, CA 95131

TITLE
8S2, 8-lead, 0.209" Body, Plastic Sma
Outline Package (EIAJ)


DRAWING NO. REV.

8S2 С


S8S1

Top View

Side View

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
E	5.79		6.20	
E1	3.81		3.99	
Α	1.35		1.75	
A1	0.1		0.25	
D	4.80		4.98	
С	0.17		0.25	
b	0.31		0.51	
L	0.4		1.27	
е		1.27 BSC		
9	0°		8°	

 $Notes: 1. \ This \ drawing \ is for general \ information \ only; \ refer \ to \ JEDEC \ Drawing \ MS-012 \ for \ proper \ dimensions, \ tolerances, \ datums, etc.$

7/28/03

TITLE
S8S1, 8-lead, 0.150" Wide Body, Plastic Gull Wing Small
Outline (JEDEC SOIC)

DRAWING NO.
S8S1
A

Errata

ATtiny13 Rev. B

The revision letter in this section refers to the revision of the ATtiny13 device.

- Wrong values read after Erase Only operation
- High Voltage Serial Programming Flash, EEPROM, Fuse and Lock Bits may fail
- Device may lock for further programming
- debugWIRE communication not blocked by lock-bits
- Watchdog Timer Interrupt disabled

1. Wrong values read after Erase Only operation

At supply voltages below 2.7 V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00).

Problem Fix/Workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.

2. High Voltage Serial Programming Flash, EEPROM, Fuse and Lock Bits may fail

Writing to any of these locations and bits may in some occasions fail.

Problem Fix/Workaround

After a writing has been initiated, always observe the RDY/BSY signal. If the writing should fail, rewrite until the RDY/BSY verifies a correct writing. This will be fixed in revision D.

3. Device may lock for further programming

Special combinations of fuse bits will lock the device for further programming effectively turning it into an OTP device. The following combinations of settings/fuse bits will cause this effect:

- 128 kHz internal oscillator (CKSEL[1..0] = 11), shortest start-up time (SUT[1..0] = 00), Debugwire enabled (DWEN = 0) or Reset disabled RSTDISBL = 0.
- 9.6 MHz internal oscillator (CKSEL[1..0] = 10), shortest start-up time (SUT[1..0] = 00), Debugwire enabled (DWEN = 0) or Reset disabled RSTDISBL = 0.
- 4.8 MHz internal oscillator (CKSEL[1..0] = 01), shortest start-up time (SUT[1..0] = 00), Debugwire enabled (DWEN = 0) or Reset disabled BSTDISBL = 0.

Problem fix/ Workaround

Avoid the above fuse combinations. Selecting longer start-up time will eliminate the problem.

4. debugWIRE communication not blocked by lock-bits

When debugWIRE on-chip debug is enabled (DWEN = 0), the contents of program memory and EEPROM data memory can be read even if the lock-bits are set to block further reading of the device.

Problem fix/ Workaround

Do not ship products with on-chip debug of the tiny13 enabled.

5. Watchdog Timer Interrupt disabled

If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the watchdog will be disabled, and the interrupt flag will automatically be cleared. This is only applicable in interrupt only mode. If the Watchdog is configured to reset the device in the watchdog time-out following an interrupt, the device works correctly.

Problem fix / Workaround

Make sure there is enough time to always service the first timeout event before a new watchdog timeout occurs. This is done by selecting a long enough time-out period.

ATtiny13 Rev. A

Revision A has not been sampled.

Datasheet Change Log for ATtiny13

Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

Changes from Rev. 2535B-01/04 to Rev. 2535C-02/04

- 1. C-code examples updated to use legal IAR syntax.
- 2. Replaced occurences of WDIF with WDTIF and WDIE with WDTIE.
- 3. Updated "Stack Pointer" on page 8.
- 4. Updated "Calibrated Internal RC Oscillator" on page 22.
- 5. Updated "Oscillator Calibration Register OSCCAL" on page 22.
- 6. Updated typo in introduction on "Watchdog Timer" on page 35.
- 7. Updated "ADC Conversion Time" on page 82.
- 8. Updated "Serial Downloading" on page 103.
- 9. Updated "Electrical Characteristics" on page 115.
- 10. Updated "Ordering Information" on page 8.
- 11. Removed rev. C from "Errata" on page 12.

Changes from Rev. 2535A-06/03 to Rev. 2535B-01/04

- 1. Updated Figure 2 on page 2.
- 2. Updated Table 12 on page 30, Table 17 on page 39, Table 37 on page 89 and Table 57 on page 116.
- 3. Updated "Calibrated Internal RC Oscillator" on page 22.
- 4. Updated the whole "Watchdog Timer" on page 35.
- 5. Updated Figure 53 on page 103 and Figure 56 on page 108.
- 6. Updated registers "MCU Control Register MCUCR" on page 49, "Timer/Counter Control Register B TCCR0B" on page 69 and "Digital Input Disable Register 0 DIDR0" on page 76.
- 7. Updated Absolute Maximum Ratings and DC Characteristics in "Electrical Characteristics" on page 115.
- 8. Added "Maximum Speed vs. VCC" on page 116
- 9. Updated "ADC Characteristics Preliminary Data" on page 118.
- 10. Updated "ATtiny13 Typical Characteristics" on page 119.
- 11. Updated "Ordering Information" on page 8.
- 12. Updated "Packaging Information" on page 9.
- 13. Updated "Errata" on page 12.
- 14. Changed instances of EEAR to EEARL.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France

Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

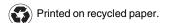
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123

3P 123


38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel[®] and combinations thereof, AVR[®], and AVR Studio[®] are the registered trademarks of Atmel Corporation or its subsidiaries. Microsoft[®], Windows NT[®], and Windows XP[®] are the registered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.