

High Power LED

5W Edixeon™

Edixeon[™]Emitter

Approved By Customer	Designer	Checker	Approval

Date : 2006/07/31 Version : 1.2 Device No. : 3-RD-01-E0017 EDISON OPTO CORPORATION 4F, No. 800, Chung-Cheng Rd, Chung-Ho, Taipei 235, Taiwan Tel: 886-2-8227-6996 Fax: 886-2-8227-6997 http://www.edison-opto.com.tw

5W Edixeon[™]

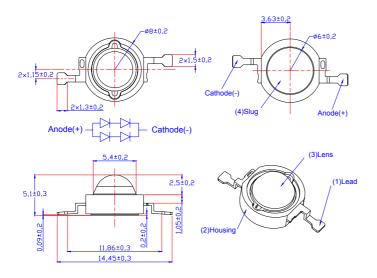
Edixeon emitters are one of the highest flux LEDs in the world by Edison Opto. Edixeon emitters are designed to satisfy more and more Solid-State lighting High Power LED applications for brilliant world such as flash light, indoor and outdoor decoration light. Edixeon emitters are designed by particular package for High Power LED. 5W Edixeon white has more than 160 lumens @700mA. Unlike most fluorescent sources, Edixeon contains no mercury and has more energy efficient than other incandescent light source.

Features

- Various colors
- More energy efficient than incandescent and most halogen lamps
- Low voltage operated
- Instant light
- Long operating life

Typical Applications

- Reading lights
- Portable flashlight
- Up-lighters and Down-lighters
- LCD Backlights
- General lighting
- Contour lights
- Ceiling lights
- Garden lighting
- Decoration lights
- Architectural lighting
- Beacon lights


Edixeon Technology

- Tjmax = 135 ^oC
- High Lumen performance
- Low thermal resistance 5 °C/W
- RoHS compliant
- Industrial best lumen maintenance 50,000hrs life at
- I_{Fmax} with 70% lumen if Tj is lower than 70 ^oC

Package Outlines

Lambertian

Unit:mm

- 1. All dimensions are in mm.
- 2. It is strongly recommended that the temperature of lead be not higher than 55° C.
- 3. It is important that the slug can't contact aluminum surface, It is strongly recommended that there should coat an uniform electrically isolated heat dissipation film on the aluminum surface.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
DC Forward Current	I _F	700	mA
Peak pulse current;(tp≦100µs, Duty cycle=0.25)	I _{pulse}	1000	mA
Reverse Voltage	V _R	5	V
Forward Contact Voltage	V _{FC}	16	V
LED junction Temperature	Tj	135	°C
Operating Temperature	T _{opr}	-30 ~ +110	°C
Storage Temperature	T _{stg}	-40 ~ +120	°C
Soldering Temperature	JEDEC 020c	260	°C
ESD Sensitivity	V _B	500	V
Manual Soldering Time at 260°C (Max.)	T _{sol}	5	seconds

Notes

1. Proper current derating must be observed to maintain junction temperature below the maximum.

2. LEDs are not designed to be driven in reserve bias.

Luminous Flux Characteristics at I_F=700mA(Tj=25°C):

Lens Item	Part Name	Color	Min.	Flux Typ.	Max.	Units
	EDEW-5LA6	White	112.5	160.0		Im
Lambertian	EDEX-5LA6	Warm White	86.5	110.0		Im
	EDEB-5LA6	Blue	30.3	50.0		Im

Forward Voltage Characteristics at I_F=700mA(Tj=25℃):

Lens Item	Part Name	Part Name Color		V _F			
	00101	Min.	Тур.	Max.	Units		
	EDEW-5LA6	White	7.0		8.5	V	
Lambertian	EDEX-5LA6	Warm White	7.0		8.5	V	
	EDEB-5LA6	Blue	7.0		8.5	V	

Lens Item	Part Name	Color		λd/CCT		Units
Lens item	Lens item Part Name	0000	Min.	Тур.	Max.	Units
	EDEW-5LA6	White	5000		8000	K
Lambertian	EDEX-5LA6	Warm White	2800		3800	K
	EDEB-5LA6	Blue	460		475	nm

Wavelength or Color Temperature Characteristics at I_F =700mA(Tj=25°C):

Temperature Coefficient of Forward Voltage & Thermal Resistance Junction to Case

Characteristics at I _F =700mA(Tj=25°C) :						
Lens Item	Part Name	e Color	∆V _F /∆T		Rθ _{J-B}	
			Тур.	Units	Тур.	Units
	EDEW-5LA6	White	-2	mV/℃	5	°C/W
Lambertian	EDEX-5LA6	Warm White	-2	mV/℃	5	°C/W
	EDEB-5LA6	Blue	-2	mV/℃	5	°C/W

Emission Angle Characteristics at I_F=700mA(Tj=25°C):

Part Name	Color	Min.	2Θ½ Typ.	Max.	Units
EDEW-5LA6	White		130		Degrees
EDEX-5LA6	Warm White		130		Degrees
EDEB-5LA6	Blue		150		Degrees

Note

- 1. Flux is measured with an accuracy of ± 10%.
- 2. CCT selection acc. to CCT groups and an accuracy of ± 200K
- 3. Forward Voltage is measured with an accuracy of ± 0.1V
- 4. Wavelength is measured with an accuracy of ± 0.5nm
- 5. All white, warm white and blue emitters are built with InGaN

JEDEC Moist	ure Sen	sitivity:				
	Flo	or Life		Soak Re	quirements	
Level	Time	Conditions	Sta	ndard	Accelerate	d Environment
		ne Conditions	Time (hours)	Conditions	Time (hours)	Conditions
4	72hour	s ≦30℃ / 60% RH	96 +2/-0	30℃ / 60% RH	20 +0.5/-0	60℃ / 60% RH

			SOAK REQUIREMENTS				
	FLOO	R LIFE	STAN	STANDARD		ACCELERATED EQUIVALENT 1	
LEVEL	TIME	CONDITIONS	TIME (hours)	CONDITIONS	TIME (hours)	CONDITIONS	
1	Unlimited	≤30°C/85% RH	168 +5/-0	85°C/85% RH			
2	1 year	≤30°C/60% RH	168 +5/-0	85°C/60% RH			
2a	4 weeks	≤30°C/60% RH	696 ² +5/-0	30°C/60% RH	120 +1/-0	60°C/60% RH	
3	168 hours	≤30°C/60% RH	192 ² +5/-0	30°C/60% RH	40 +1/-0	60°C/60% RH	
4	72 hours	≤30°C/60% RH	96 ² +2/-0	30°C/60% RH	20 +0.5/-0	60°C/60% RH	
5	48 hours	≤30°C/80% RH	72 ² +2/-0	30°C/60% RH	15 +0.5/-0	60°C/80% RH	
5a	24 hours	≤30°C/60% RH	48 ² +2/-0	30°C/60% RH	10 +0.5/-0	60°C/60% RH	
6	Time on Label (TOL)	≤30°C/60% RH	TOL	30°C/60% RH			

Note

1. The standard soak time includes a default value of 24 hours for semiconductor manufacturer's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life	25°C, I_F = max DC (Note 1)	1000 hours	Note 2
High Temperature High Humidity Operating	⁹ 85℃ / 85%RH, I _F = max DC	1000 hours	Note 2
Temperature Cycle	-40 $^\circ\!\mathrm{C}/100^\circ\!\mathrm{C}$,30 min dwell /<5min transfer	200 cycles	Note 2
High Temperature Storage Life	110℃	1000 hours	Note 2
Low Temperature Storage Life	-55℃	1000 hours	Note 2
Thermal Shock	-40 / 120 $^\circ\!\mathrm{C}$, 20 min dwell /<20 sec transfer	200 cycles	No catastrophics
Mechanical Shock	1500 G, 0.5 msec pulse, 5 shocks each 6 axis		No catastrophics
Natural Drop	On concrete from 1.2 m, 3X		No catastrophics
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min, 1.5 mm, 3X/axis		No catastrophics
Solder Heat Resistance (SHR)	$260^\circ\!\mathrm{C}\pm5^\circ\!\mathrm{C}$, 10 sec		No catastrophics
Solderability	Steam age for 16 hr, then solder dip at 260 $^\circ\!\!\mathbb{C}$ for 5 sec		Solder coverage on lead

Operating life, mechanical, and environmental tests performed on Edixeon package:

Note

1. Depending on the maximum derating curve.

2. Failure Criteria:

Electrical failures

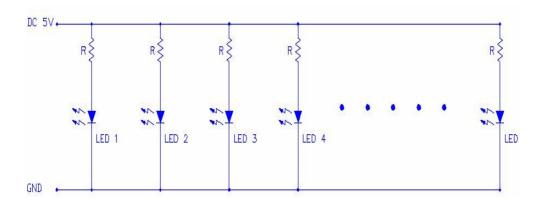
V_F shift >=10%

I_R<50uA @Vr=5V

Light Output Degradation

% lv shift >= 35% @1000hrs or 200cycle

Visual failures


Broken or damaged package or lead

Solder-ability < 95% wetting

Dimension out of tolerance

degradation at 1000 hours, or an average lv degradation for the test of greater than 35% at 1000 hours.

When we talk about MTBF of Edixeon, we can provide a formula for customers.

log(Life)= <u>1600</u> Tj(°C)+273

Tj (°C)	Life (hours)	Tj (°C)	Life (hours)
25	234,000	85	29,500
30	191,000	90	25,700
35	157,000	95	22,300
40	129,000	100	19,500
45	107,000	105	17,100
50	90,000	110	15,100
55	75,000	115	13,300
60	64,000	120	11,700
65	54,000	125	10,500
70	46,000	130	9,300
75	39,600	140	7,500
80	34,000	150	6,000

Life means the time light output becomes 70%

When we talk about MTTF of Edixeon, we can provide a formula for customers_

MTTF is assumed to be 100,000,000

The failure rates at different hours and different systems(LED quantity) are as below:

if there is 1 failure of 1 emitter in a system

Tj=75°C is giving 0.01%(100ppm) at 10,000hrs

if there is 1 failure of 10 emitters in a system

Tj=75℃ is giving 0.1%(1,000ppm) at 10,000hrs

if there is 1 failure of 1 emitter in a system

Tj=75℃ is giving 0.05%(500ppm) at 50,000hrs

if there is 1 failure of 10 emitters in a system

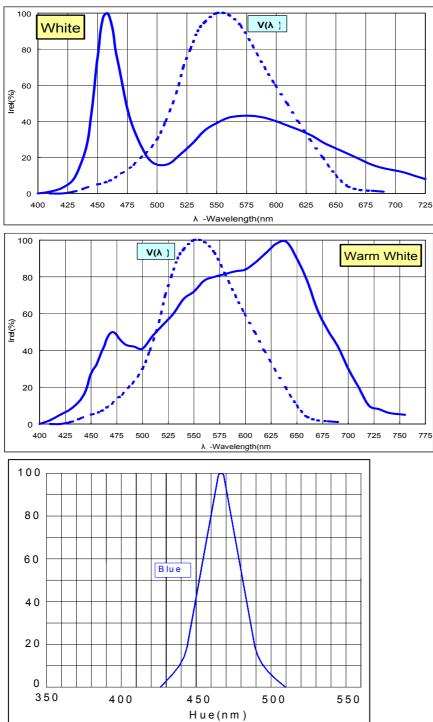
Tj=75℃ is giving 0.5%(5,000ppm) at 50,000hrs if there are 10 emitters

How to Know Tj in Your Application?

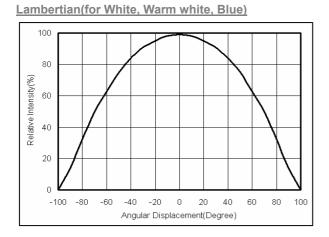
Rth(junction to case)=5°C/W

The thermal grease is 200um. K(Aluminum PCB)=2.6 W/mk

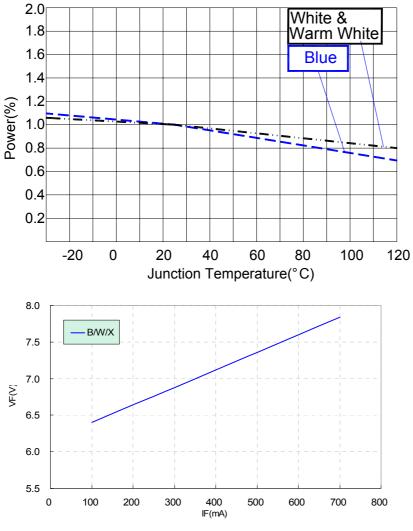
Then Rth(case to board) = $\frac{200}{2.6x(6.4/2)^2 \pi}$ =2.4 °C/W


The Rth between board and air is mainly dependent on the total surface air.

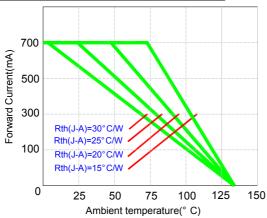
Rth(board-air)≒	500 Area(cm ²)	
If Area is 30cm ²	Rth=16.7	∆T(junction-air)=(5+2.4+16.7)x5=120.1 °C
If Area is 90cm ²	Rth=5.5	∆T (junction-air)=(5+2.4+5.5)x5=64.5 °C
If Area is 150cm ²	Rth=3.3	ΔT (junction-air)=(5+2.4+3.3)x5=53.5 °C


ASSIST FORM about High Power LED Reliability(White Edixeon)

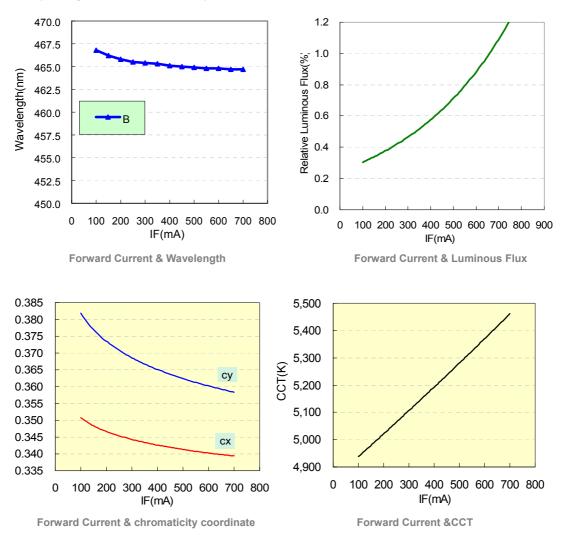
	Ts=45°C	Ts=65°C	Ts=85°C
Voltage	7.5V	7.5V	7.5V
Current	700mA	700mA	700mA
Wattage	5.25W	5.25W	5.25W
Heat	4.5W	4.5W	4.5W
Rth	5°C/W	5°C/W	5°C/W
Tj	67.5°C	87.5 °C	107.5°C
L _{70%}	50,000hrs	27,000hrs	16,000hrs



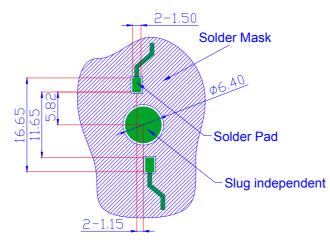
Typical Radiation Pattern for



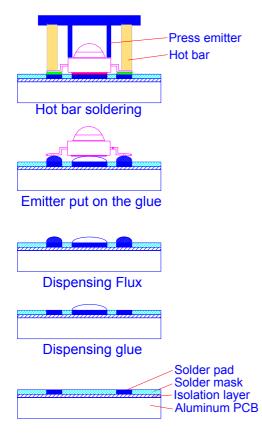
Typical Optical and Electrical Curves



Operating Current & Forward Voltage


Typical Optical and Electrical Curves

Operating Current & Ambient Temperature


Recommend Solder Pad Design

Note:

Solder pad can't be connected to slug.

Recommend Solder Steps

Notes

- 1. Aluminum PCB material with a thermal conductivity greater than 5.0 W/mK.
- 2. Solder pad can't be connected to slug.
- 3. The Thermal glue should be as thin as possible for better heat conductivity.
- 4. During any assembly process touching lens is avoided. This will cause pollution or scratch on the surface of lens.
- Thermal glue with a thermal conductivity greater than 3.0 W/mK and the thickness must be less than 100µm.

Adhesive for Emitter to Aluminum PCB

Suggestion:

Ease of use

Non-solvent, One-part

Fast tack free

3 minutes at 25°C

No corrosion

Alcohol type of RTV

- Low volatility

Low weight loss of silicone volatiles

Adhesion

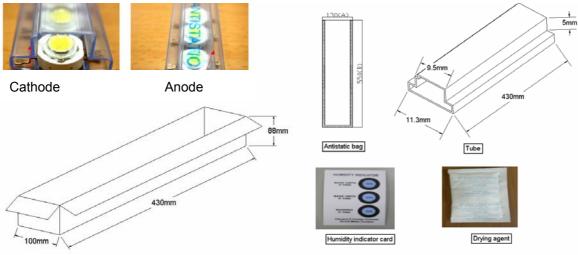
Excellent adhesion to most materials without use of a primer

- Dielectric properties
- Cured rubber exhibits good dielectric properties
- Excellent thermal stability and cold resistance
 Cured rubber provides wide service temperature range

Typical Properties

Specification	Suggested Properties
Take-free time	3~10 minutes
Specific gravity	< 3 g/cm ²
Thermal conductivity	> 2.5 W/mK
Rth in using	< 1.8 °C/W
Volume resistance	> 1x10 ¹⁴
Lap shear adhesion strength	> 200 N/ cm ²
Tensile strength	> 4 Mpa

Thrust for Edixeon Lens


_ens Type

Typical Thrust

Lambertian Lens

5 kgf

Package Specifications

Notes

- 1. There are 50pcs emitters in a tube
- 2. There are 20 tubes in a bag
- 3. There are 2 bags in an inner box
- 4. A bag contains one humidity indicator card and drying agent

Packing Step	Туре	Dimension(mm)	Emitter Q'ty(Max.)
1	Tube	430*13	50
2	Inner Box	430*100*88	1,000
3	Outer Box	460*196*135	2,000